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Continuation or breakdown in tornado-like vortices 
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Laboratory experiments on swirling flows through tubes often exhibit a phenomenon 
called vortex breakdown, in which a bubble of reversed flow forms on the axis of swirl. 
Mager has identified breakdown with a. discontinuity in solutions of the quasi- 
cylindrical flow equations. In  this study we define a tornado-like vortex as one for 
which the axial velocity falls to zero for sufficiently large radius, and seek to clarify 
the conditions under which the solution of the quasi-cylindrical flow equations can be 
continued indefinitely or breaks down a t  a finite height. Vortex breakdown occurs as 
a dynamical process. Hence latent-heat effects, though doubtless important to the 
overall structure and maintenance of the tornado, are neglected here on the scale of 
the breakdown process. The results show that breakdown occurs when the effective 
axial momentum flux (flow force) is less than a critical value; for higher values of the 
flow force, the solution continues indefinitely, with Long’s ( 1962) similarity solution 
as the terminal state. When applied to the conditions of the 1957 Dallas tornado, 
the computed breakdown location is in agreement with Hoecker’s analysis of the 
observations. 

1. Introduction 
I n  1953, an interesting series of visual observations of tornadoes was made at close 

range by Reber, who published (in 1954) sketches of his observations together with 
related synoptic conditions. In  several cases, a ‘ collar ’ or ‘bulge ’ formed on the visible 
core of the tornado a t  a level of about 60% of the core height just before the funnel 
lifted from the ground. This feature is not necessarily representative of most tornado 
sy8tems.t However, Ward (1972) has carried out some laboratory experiments in 
tornado modelling and he also observed a similar abrupt enlargement of the vortex- 
core diameter. He identified that condition with Reber’s observations and also with a 
similar phenomenon previously noted in laboratory duct flows with swirl (Kirkpatrick 
1964) and in leading-edge vortices of aircraft delta wings (Lambourne & Bryer 196l), 
viz. ‘ vortex breakdown ’.Ward noted that breakdown in hisexperiments was associated 
with transition to  turbulent flow, although other experimenters have obtained 
breakdown with a well-defined laminar bubble of reversed flow (Harvey 1962; 
Sarpkaya 1971). 

Several theories have been put forward in the literature for the onset and structure 
of vortex breakdown. On the basis of an idea due to Squire (1960), Benjamin (1967) 

During part of its lifetime, the Jorda.n, Iowa tornado of 13 June 1976 developed such a 
bulge (see plate 1 ; private communication from Dr Robert Davis-Jones, NSSL). 
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FIGURE 1.  Cross-section of vortex showing regions of distinct types of flow (not to scale). I, 
potential vortex; 11, boundary layer; 111, eruption zone; TV, vortex core; V, reversed-flow bubble. 
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has developed a theory which likens vortex breakdown to a hydraulic jump. Hall 
( 1972) criticallyreviewed this and earlier work, and presented someof hisownnumerical 
results as well. More recently, Mager (1972) has analysed the problem on the basis of 
momentum-integral theory, and found that vortex breakdown corresponds to a 
discontinuance of solutions of his equations. Randall &, Leibovich (1973) theorized 
that vortex breakdown corresponds to a stationary-wave solution of the Korteweg-de 
Vries equation. Results from both these recent theories show trends in qualitative 
agreement with Sarpkaya’s data. 

Our idealization of the tornado corresponds to what Morton (1969) calls a ‘vortex 
jet ), i.e. a cylindrical structure which behaves like a potential vortex at  the core edge 
and whose vertical velocity is large in the core but decreases to zero at  the edge. This 
model may or may not be reasonable, since only sketchy information is available on 
velocity profiles in a tornado vortex. To date no theoretical work properly accounting 
for the viscous structure of the core has dealt with breakdown in a tornado-like vortex, 
although Barcilon (1967) has given an inviscid analysis of such a vortex. 

The analysis presented herein is relevant as a fundamental flow problem in its own 
right, without reference to tornadoes. Certainly we have neglected some features of 
motion in the atmosphere, such as latent-heat release, baroclinic density variations 
and turbulence. It is not disputed that humidity is an essential ingredient in tornado 
formation and structure; the point here is that vortex breakdown is dynamical in 
character and that, on the scale of the breakdown process, latent-heat release would 
only obscure the fundamcntal mechanism involved. On a larger scale, of course, 
latent-heat effects must be included. 

Referring to figure 1 ,  the vortex jet is seen to be only a segment of the tornado 
flow field (this flow structure was proposed by Barcilon also). Region I is inviscid 
and the flow there consists of that due to a potential vortex. The boundary layer in 
region I1 delivers a certain amount of mass through the turning region (111) into the 
vortex core itself (IV). Region V is the region of reversed flow produced when 
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breakdown occurs. The parameter governing the structure of the vortex in region I V  is 
the Reynolds number r / v .  If the Reynolds number is large, then the core is slender 
and the Navier-Stokes equations reduce to the set of equations which have come to 
be called the quasi-cylindrical equations (Hall 1966); for a homogeneous fluid, these 
are 

a a - ( ru)  + - (rw) = 0, 
ar az (1.1) 

aP/ar = v2/r, (1.2) 

ar r ar ' 
a a u-(rv)+w-(rv) a a = vr- - - ( r v ) )  

ar az 

These equations are precisely those for a round jet except that the large swirl neces- 
sitates the retention of the centrifugal force, so that the pressure is not constant across 
the jet,. The hydrostatic pressure is included in P,  which represents the effective 
pressure p / p  + gz. 

The boundary conditions are 

u = v = avlar = aw/ar = 0 on r = 0 (1.5) 

and V N  r / 2 ~ r , w + o  as r+m. (1.6) 

At the base of region IV, z = zi, one must specify (u, v) u~)) which are in principle 
determined by the structure of the flow leaving the eruption region 111. In the absence 
of an adequate theory for region 111, we shall assume initial conditions appropriate 
to laboratory experiments or natural observations. The radial velocity may not be 
specified independently : instead, as in boundary-layer theory, (1 .1  )-( 1.4) may be 
used to obtain a differential equation for ui(r) in terms of vi(r) and wi(r), the azimuthal 
and vertical velocity components on z = zi. The result is 

If one integrates (1.4) across the core, the result is 

Hence, provided that the integral exists, i t  is invariant with z.  Following Long (1962), 
we define the 'momentum transfer', also called the 'flow force', by the integral 

J = 27r r(P+wz)dr,  (1.9) Snm 
and (1.8) requires that dJld,: = 0. With condition (1.6) at the edge of the core, (1.2) 
indicates that as r+co 

P - P(m) - r2/a&2. 

Therefore, if J is to be bounded, the requirement is that 

ui - r / 2 b r  as r - f c o .  (1.10) 
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We have chosen for study the initial conditions 
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vi = (r/27~r) { 1 - exp [ - (r /6)2]} ,  (1.lla) 

where wi clearly decays exponentially to the form ( l . l O ) ,  and wi = w, on the axis. 
6 is a characteristic width of the vortex profile, and the parameter 2nw0S/I’ = a 
totally characterizes the structure of 8wi/I’. Solutions of (1.1)-(  1.4) with these initial 
conditions must then have the property of constant flow force. 

The question of chief interest here is simply stated: for what values of a (or equi- 
valently J / P )  will conditions (1 .11)  lead to a smoothly flowing vortex jet as z+co, 
and, conversely, for what (if any) values of a will the solution break down at some 
finite z = z* T Self-similar vortex-jet solutions satisfying edge boundary condition 
(1.10) have been found by Long (1962), and we propose that they are related to a 
large-z solution of (1.1)-(1.4) when one exists. In  $ 2  we discuss these similarity 
solutions in detail, improved results having been obtained by a shooting technique. 
The similarity solution is taken as the first term of the asymptotic solution of 
(1.1)-( 1.4) in inverse powers of z and the next term is considered in $3 .  We show 
numerical solutions of (1.1)-(1.4) with boundary conditions (1.5), (1.6) and (1.10) 
and initial conditions (1 .11)  in 3 4, and some details of the structure of the breakdown 
region when it occurs. 

2. Improved solutions of similarity equations 
The relevance of Long’s (1962) similarity solutions to the terminal state of the vortex 

jet is anticipated here, and pertinent properties of these solutions are examined. The 
essential nature of Long’s solution is contained in his similarity variable 

y = Kr/2bz, (2.1) 

where K = k’/27r is a circulation parameter and v is the kinematic viscosity of the 
fluid. Clearly, surfaces of constant y are cones with apex at  the origin. It can be shown 
that (2.1) is the only similarity variable of the form 9-19 that permits solutions of the 
governing equations (1  .l)-( 1 .a). 

In  terms of a stream function $, the radial and axial components of the velocity 
are defined as 

u = -r-la$/az, w = r-la$/ar. 

In  similarity form the flow variables are given as follows. For the meridional flow, 

$ = w-o(Y) ,  (2.2) 

w = (K/2*r)f;(Y), (2.3) 

u = ( - W f O ( Y )  + (K/2+Z)f;(y)? 
for the azimuthal flow, 

and for the pressure, 
= W / r )  SOlY), 

P = (- K4/v2z2) SO@). 
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In terms of these similarity variables the governing equations (1.1)-( 1.4) reduce to 
the set of ordinary differential equations first given by Long: 

2y3s;+g$ = 0, (2.7) 

(2.8) 

yf;-(l-fo)f;-4y3So = 0. (2.9) 

Yg: - (1 - t o )  g; = 0, 

Note that (2.9) is a first integral of (1.4). Corresponding to (1.9), we define 

Thus to the set (2.7)-(2.9), we add the differential equation 

ym’ + 47ry2s, - nf h2 = 0 

m(co) = J / K 2  = M .  

(2.10) 

and note that the non-dimensional flow force is given by 

(2.11) 

For boundary conditions on (2.7)-(2.10), rewrite (1.6) and (1.10) in similarity 
variables: 

= go(co) = 1.  (2.12) 

The method of solution of (2.7)-(2.10) was by an iterative-shooting technique 
(Nachtscheim & Swigert 1965), but with several refinements over the numerical 
solutions of the same equations previously obtained by Long (1962). It may be shown 
from (2.8) that go approaches its asymptotic value of 1 exponentially. Thus (2.7) 
shows that 

so N 1/4y2 as y-tco (2.13) 
and (2.9) indicates that 

(2.14) 

SO that so and f 6 both approach their edge values only algebraically. In  the numerical 
solution, (2.13) and (2.14) were used to correct for slow decay to the asymptotes, 
since 01 may be determined from 

a = lim y2( 1 -f;). 

Further, the flow force M approaches its value slowly as the edge is taken to infinity; 
i.e., from (2.10) and (2.14), 

M-m(y)  N -na/y as y-tco. (2.15) 

We also corrected the computed value of the flow force using (2.15). More details of 
the numerical method may be found in Burggraf & Foster (1975). 

The properties of the solutions so obtained were described by Long, and include the 
remarkable feature of non-uniqueness: any given value of M corresponds to two 
different solutions. However, the results given by Long do not allow ready comparison 
of the solution pair for a given M ,  nor is M given to any useful accuracy. Our interest 
is in possible terminal states of the vortex jet for the 11.1 corresponding to our assumed 

u-m 
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2 4 6 8 10 12 14 16 18 20 22 24 26 

I' 

3.75 0.0488 
0.0284 

3.8 0.0839 
0.0165 

4.0 0.1501 
- 0.0301 

5.0 0.3520 
- 0.0675 

6.0 0.5155 
-0.0711 

- 

- 

o ' I  I I l I I I 
'2 4 6 8 10 12 14 16 18 20 22 24 26 

1 I 1 1 -  

I' 
.0.1- 

- 3.915 
- 4.31 
- 3.389 
- 4.99 
- 2.707 
- 6.327 
- 1.611 
- 11.189 
- 1.138 
- 16.377 

TABLE 1 .  Parameter values for self-similar vortex jets. 

initial state (1 .1  1). Hence it was deemed essential to carry out accurate solutions with 
the emphasis on selected values of M .  

We define a, = w(0) vzIK2. Table 1 gives pairs of values of a, and t h e  parameter 
01 appearing in the asymptotic formulae for large y. This table illustrates the following 
properties of the solutions: 

(i) The minimum value of M for which a solution can be found is very nearly 3.75, 
compared with the value of 3.65 given by Long ( 1  962). We denote this value by M*. 

FIGURES 2 (u, b ) .  For legend see next page. 
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FIGURE 2. Similarity solution : vertical velocity profiles. 
(a) M = 3-75, ( b )  M = 4.0, (c) M = 5.0. 

(ii) For M < 4.71, both members of the solution pair for a given M exhibit a defectl 
of axial velocity in the vicinity of the axis. 

(iii) For Jf > 3.81, one member of the solution pair has flow reversal at the axis 
(a, < 0). These reversed-flow solutions may have relevance to the current belief that 
the flow at the centre of a tornado is downward. 

Vertical velocity profiles are shown in figure 2 for M = 3.75, 4.0 and 5.0. The 
solution pair for M = 3.75 closely brackets the unique solution for the minimum M .  
Both exhibit severe velocity defects on the axis, although the velocity on the axis 
is positive for both. For M = 4, the velocity defect is less severe for one solution, but 
has deepened for the other to the point of reversing the flow on the axis. For M = 5, 
the defect is no longer present in one solution, while the core of flow reversal has grown 
larger in the other. The critical value of M at which the velocity defect just disappears 
is 4.71. 

For convenience in later discussion, we call the solution with the smaller axial 
velocity defect (i.e. the algebraically larger value of a,) a type I solution, and the other 
a type I1 solution. Hence the solutions exhibiting flow reversal are all of type 11. 
This notation is employed in figures 2 and 3. 

Solution curves for the swirl velocity v and pressure P for M = 4.0 are shown in 
figure 3. The width of these profiles is rather less than that of the axial velocity profiles, 
corresponding to exponential decay of v and P to their external potential-vortex 
behaviour, in contrast to the algebraic decay of w. Further discussion of the similarity 
solutions will be given in 94, where they are compared with flows developing from 
non-similar initial states. 

3. Perturbation of similarity solution 
As stated previously we expect the similarity solution of Q 2 to represent the large-z 

structure of a vortex jet with finite flow force. An important question in regard to 
detailed comparison of such a self-similar solution with the solutions obtained by 
marching (see Q 4) is the deviation of the numerical solution from the similar solution 
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FIGURE 3. Similarity solution for M = 4.0. (a) Angular 
momentum profiles. (b) Pressure profiles. 

for large but finite z. The quasi-cylindrical equations (1.1)-( 1.4) have the following 
asymptotic expansion for large z :  

(3.1) I II. = H f o ( Y )  + (+)f l (Y) + -**I, 
2, = W / r )  [90(Y) + ( l / 4  Sl(Y/)  + **.I’ 
P = ( - K4/v2z2)  [s,(Y) + (Z/Z) sl(yj) + ... 1, 

where y is the similarity variable of (2.1) and 1 is a characteristic length associated with 
upstream conditions. The zero subscripts denote Long’s self-similar solution of 5 2. 
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When (3.1) is substituted into (1.1)-(1.4), the zero-order terms give Long's equations 
(2.7)-(2.9), while the terms of next higher ordeI yield 

YY': - (1 -fo) Yf; + (1  +fo + 3yf;)f; - 4Y(Y3S,)' = 0. (3.4) 

Two types of solution of (3.2)-(3.4) have been identified. The first type simply 
represents an origin shift of the zero-order solution. A solution of this type is to be 
expected, since the virtual origin of the similarity solution need not be at  z = 0. 
Suppose that we shift the origin through a distance Az, replacing z wherever it occurs 
in (2.2) by z + Az. On expansion for small Az, such a procedure gives a perturbation of 
the similarity solution with 1 in (3.1) equal to Az. We denote this origin-shift solution 
by adding a second subscript zero. Thus 

Tornado -1i ke vortices 693 

FIGURE 4. Axial velocity perturbation solution for zero swirl perturbation. 
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The second type of solution of (3.2)-(3.4)) which we now denote as (fll, gll, sll), 
has no such simple physical interpretation. Being motivated by the non-similar 
marching solutions discussed in Q 4, we seek perturbations in the axial flow that are 
not coupled with the swirl flow. In that case, g,, and sll both vanish, and fll is given 
by the reduced form of (3.4): 

(3.8) Y% - Y ( 1  --fo)fl+ “1 + f o )  + 3Yfilfl = 0. 

From (3.8) it can be shown that the asymptotic form of& decays either algebraically 
like 9 - 2  or exponentially like exp ( - y). The algebraic decay term dominates and, after 
some algebra, we find several terms in the asymptotic expansion for large y: 

f l l  - P + 9 + 3 P ( 1 2 - a ) +  ..., 
Y2 Y3 Y4 (3.9) 

where a is defined in Q 2. Numerical solutions of (3.2)-(3.4) were obtained by a shooting 
method as in 9 2 using the asymptotic structure given above. 

The velocity profile f l1(y)/2y, proportional to wll, is shown in figure 4. We observe 
that this type of perturbation mainly affects the flow quite near the axis. The sign 
change noted near y = 2.5 is required by the condition that the flow force be un- 
changed by the perturbation. 

The first-order perturbation of M is given by 

and, since s1 = 0 for this case, and f 6 > 0 for all y, it is clear that f l1 must change sign 
to make AM vanish. 

4. Marching solutions 
4.1. The numerical method 

To recapitulate, the numerical problem under consideration in this section is to solve 
( 1 . 1  )-( 1.4) subject to boundary conditions (1  5 )  and (1.6) with the aim of determining 
whether or not the solutions continue to arbitrarily large z or break down, and of 
determining the nature of the terminal state in either case. The numerical scheme 
selected is a modification of one used earlier by Burggraf, Stewartson & Belcher 
(1971) to study the boundary layer induced by a potential vortex. A similar scheme 
was used by Hall (1967) to calculate several examples of vortex breakdown, such as 
swirling flow through tubes and leading-edge vortices on delta wings. 

For an arbitrary variable #( r ,  z ) ,  define the quantities q5.j, 4; and $i as 

where zit, = zi + Az and riil = r j  k Ar. Derivatives are then defined in the usual manner 
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Thus the equations of motion (1.1)-(  1.4) are replaced by a finite-difference analogue, 
which can be expressed in matrix notation as 

T,V = R, T,W = S. (4.1) 

Here T is a tridiagonal square matrix whose elements depend on zi, rj, Gj and z(i, 
V and W are column vectors representing the vj and the wi respectively and R and S 
are column vectors for (1.3) and (1.4) whose elements are known functions of the flow 
properties at (ri ,  zi) as well as the unknown properties a t  (ri, z ~ + ~ ) .  

The fact that T is tridiagonal permits a highly efficient solution algorithm, based 
on the Gauss-reduction procedure. Only the non-vanishing matrix elements on the 
three diagonals are stored. The elements on the subdiagonal can be reduced to zero 
successively; the equations can then be solved one after another, starting a t  the bottom 
of the matrix. This procedure requires of the  order of 6N multiplications and divisions 
for the complete solution, compared with order N 3  for conventional methods. The 
nonlinearity of the problem manifests itself in the fact that the elements of T depend 
on the solution for V and W. Hence the solution procedure is iterated at a given station 
until the desired degree of convergence is attained. The convergence criterion chosen 
was usually a repetition of the solution vectors to within for single-precision 
computations or lo-' for double-precision,? Depending on the z step chosen, typically 
10-20 iterations were required for convergence. 

Both cylindrical-polar and spherical-polar co-ordinates were d, the latter having 
been thought to be more appropriate to the development of a terminal similarity 
solution. However, experience showed that even in that case proper use of cylindrical- 
polar co-ordinates gave more accurate solutions, as judged by the smallness of variation 
of the flow force with z. In  that case, the maximum mesh radius for cylindrical co- 
ordinates must be increased a t  regular intervals. This was accomplished automatically 
in these calculations by increasing the overall mesh radius by a fixed amount (20 
additional mesh points) whenever the axial velocity deviated from boundary condition 
(1.10) by more than a specified tolerance (say, 5 x a t  any of the three outermost 
interior mesh points. When breakdown occurred, the mesh radius grew at an in- 
creasingly rapid rate as the critical point was approached. I n  other cases, the mesh 
radius tended towards a constant growth rate, indicative of the conical growth of 
self-similar vortex jets. 

The complete vortex-jet solutions were obtained by a marching procedure, starting 
with the initial profiles for vi(r) and wi(r) given by ( 1 . 1 1 )  with ui(r) determined from 
(1 .7) .  We arbitrarily set z = 0 at this station, and then march forward in z, solving the 
system (4.1) a t  each z step as we go. Because the system of equations (1.1)-(1.4) is of 
parabolic type, the marching procedure will continue as long as w > 0 everywhere 
(the decay to zero for r+cO is not significant for u, - i/r). However, if a z station is 
reached a t  which w < 0, the solution procedure breaks down.$ On physical grounds, 
this breakdown of the solution when w changes sign should be expected, since the 
streamlines on which w < 0 carry backwards information concerning unspecified 
conditions a t  larger 2. The question of whether the solution will break down or continue 

t All programmed computations in this study were carried out on an IBM 370-165 digital 

i Numerically breakdown occurs while zu is still positive; the axial gradient of w becomes 
computer. 

so large that the iteration procedure fails to converge even for very small values of Az. 
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FIGURE 5. Axis speed from the marching solutions 

for (1) M = 4.0 and (2) M = 1.7. 

indefinitely can thus be recast aa whether or not the axial velocity vanishes at a finite 
height. The answer to this question depends on the value of the flow force J relative to 
the circulation I', as will be seen from the numerical results discussed below. 

4.2. Numerical results 

By the methods described above, (1.1)-(1.4) were integrated in z subject to edge 
conditions (1.6) and ( 1.10) and with profiles on z = zi given by (1 .1  1 ). Defining M as 
J / K 2  from (1.9)) we found the following. 

(i) If M > M*, integration in z may be continued arbitrarily far and the solution 
as x -+ cc approaches the similarity solution of 9 2. 

(ii) If M < M*, the vortex jet terminates with w(O)-+O a t  a finite z (say z*) ,  
apparently signalling the onset of an axisymmetric reversed-flow bubble, char- 
acteristic of one sort of vortex breakdown. 

The critical value M* of the flow force, i.e. the value of M below which no similarity 
solutions exist (see 9 2), is about 3.75. Hence the role of the similarity solution of type I 
(in the terminology of 9 2) is that, when such a similaritysohtionexists, it is the terminal 
state of such a vortex jet; when similarity does not exist ( M  < M*), the vortex jet 
undergoes vortex breakdown at x x .  For convenience in the following discussion, we use 
non-dimensional variables R = rlS, Z E vz/KS, U = uS/v, V = vS/K and W = wS/K. 
Figure 5 shows W on the vortex axis vs. Z for two different values of M ,  one above 
and one below M*. Note that for the case M = 1-70 we extrapolate to find Z* = 0.202. 

We describe in detail below the two particular cases shown in figure 5;  we shall 
refer to the solution with M = 4 as case 1 and to that with M = 1.7 as case 2. A variety 
of mesh sizes were used to study the effects of truncation error on the numerical 
results. The values for AR and A 2  given in specific cases below represent those found 
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FIGURE 6. Vertical velocity profiles from the marching EOlUtiOn for M = 4.0, plotted in 
similarity variables. ( 1 )  2 = 2.04. (2) 2 = 4.01. (3) 2 = 8.00. (4) Similarity solution. 

to give acceptable accuracy while keeping machine time to a reasonable length. We 
obtained both single- and double-precision results to determine the effects of round-off 
errors, which are especially significant in cases where breakdown occurs. 

As stated in Q 1 ,  the flow force M must be constant with z, so we computed M at 
every z station to check that invariance. Since w decays algebraically and not expo- 
nentially to its edge value of KIBtr, the tail of the w profile beyond the finite edge loca- 
tion adds a small contribution fo the integral for M .  This effect plus some truncation 
error seem to explain the fact that our calculated M decreases slowly with Z in the 
numerical integration. In  case 1, M decreases from the starting value of 4-01 to 3.85 
at Z = 8.00; for case 2, M decreases from 1.70 to 1.64 from Z = 0 to Z = 0.196. Using 
a two-term asymptotic expansion for M [see (2.15)], we can compute the contribution 
to M from the neglected tail of the w profile a t  Z = 8-00, assuming that it is nearly 
similar; such a calculation gives a AM of 0.067 for that case, which is about 40 yo of 
the observed decrease. Truncation error due to AR > 0 probably accounts for the 
remainder. The results given for case 1 in this section are single-precision. The effects 
of round-off errors were shown to be negligible by repeating the calculation in double 
precision to Z = 4.84, with very minor changes in the results. 

In  case 1, for the results given below we used AR = 0.125 with AZ = 0.0008 for 
Z < 0.0408 and AZ = 0.004 for Z > 0.0408. The calculation proceeded from Z = 0, 
where there were 200 radial points, to = 8.00028, where 1121 points were necessary; 
the algorithm used to allow vortex growth with Z has been discussed in Q 4. I .  For case 
2, we used A 2  = 0.002 and AR = 0-05, with 200 radial mesh points at Z = 0 and 
380 points near breakdown; the results given below for this case were computed in 
double precision. The vortex grows very rapidly as z -+ z*. 
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FIGURE 7. Comparison of axis pressure from the marching solution (triangles) with the 
two-term ssymptotic solution (solid line) with A 2  = -0.341 [see (4.4b)l. M = 4.0. 
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FIGURE 8. Comparison of' axis speed from the marching solution (triangles) with the two-term 
asymptotic solution (solid line) with A 2  = -0.341, L = 4.59 [see (4.4a)l. M = 4.0. 

In case 1,  for M = 4.01 > M*,  a few of the vertical velocity profiles a t  various 
z stations are shown in figure 6 us. the similarity variable of 8 2. For values of Z beyond 
about 4, a velocity defect develops on the axis. The self-similar solution for this value 
of M (figure 2 b )  also shows such a defect and is plotted in figure 6 for comparison. In 
similarity variables, the hypothesis of approach to similarity appears to be borne out. 
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2*y= RIZ 
FIGURE 9. Comparison of the axial velocity profiles for M = 4.0 from the marching solution and 
the two-term asymptotic solution. (1) Similarity solution. (2) Similarity solution with origin shift, 
A 2  = - 0.341. (3) Equation (4.5) with A 2  = - 0.341, L = 4.59. A ,  marching solution at 2 = 8.00. 

Numerically, of course, one cannot achieve exact similarity since z = 00 is unattain- 
able; an additional difficulty for this case is that the decay to the similarity state is 
quite slow; for large M the rate of approach t o  similarity would be faster. However, the 
case M near M* was chosen because it provides a more critical test of the hypothesis 
that the similarity solution is the terminal state. 

Consider the conditions on the axis for large 2. From (3. I ) ,  we know that as z - f m  

[vzw/~ZI,,, *f;(o) + g( l / z ) f ; (o )  + -. . , ( 4 . 2 ~ )  

(4 .2b )  

For that portim of ( fl, sl, gl) associated with an origin shift Az, (3.5) and (3.7) indicate 
that 

[ - V ~ Z Z P / K ~ ~ , ,  s,(o) + (z/z) SJO) + . . . . 

f ; o ( O )  = -f;;(0)7 SlO(0) = - 2So(O) -  (4.3a, b)  

Further, there is a part of f';(o) due to the solution fll, so we write the velocity and 
pressure on the axis as 

(4.4u) 

(4.4b) 

2[vzw/K2],=, - f ; ( o )  (1 - AZ/Z) + (L/z),fil(O) + . . . , 
[ - v2z2P/K4],=, N so( 0) ( 1 - 2AZ/Z + . . . ), 

where L represents some length scale associated with the non-similar nature of the 
initial profile wi. Equation (4.4b) is plotted in figure 7 together with the numerical 
solution for M = 4. If one chooses a virtual origin such that AZ = - 0.341, we see that 
the agreement is quite good. A similar result would hold for v, since pressure is simply 
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FIGURE 10. Vertical velocity profiles from the marching solution for 
M = 1.7. (1) 2 = 0; (2) 2 = 0.138; (3)  2 = 0.196. 

an integral of the azimuthal velocity and the numerical results indicate that by Z = 6 
the azimuthal velocity is self-similar. A similar comparison of ( 4 . 4 ~ )  with the numerical 
solution yields poor agreement if L = 0; however, including fil with L = 4.59 gives 
very good agreement, a t  Z near 8 between the asymptotic resuIt and the numerical 
solution for the axis velocity, as shown in figure 8. The comparison is made more 
convincing by considering the full velocity profile. Equations (3.1) and (3.5) combine 
to give the following two-term expansion for Z-too: 

I n  figure 9, we plot the similarity solution for M = 4, the part of (4.5) including origin 
shift only (AZ = -0.341, L = 0 ) ,  and (4.13) with AZ = -0.341, 1; = 4-59. We also 
include in figure 9 the marching solution described above for M = 4. The agreement 
of the W profile from the asymptotic solution with that from the marching solution 
clearly supports our hypothesis that  the similarity solutions of 0 2 are large-z asymp- 
totic solutions of the quasi-cylindrical equations for M > M*.  

Returning now to case 2 above ( M  = 1-7 < M * ) ,  vortex breakdown occurs here a t  
Z* = 0.202. The velocity on the axis in this case drops precipitously as may be seen 
in figure 5. Figure 10 shows vertical velocity profiles for this case. Note that a velocity 
defect occurs very rapidly (as compared with the case M = 4.0 in figure 9). The details 
of the structure of the solution at z near z* are interesting, though a detailed analytical 
structure has yet to be worked out. An indication of the structure can be found from 
the numerical solution a t  the last converged z station (Z = 0.196), by comparing the 
magnitudes of terms in the partial differential equations (1.3) and (1.4). The details 
of such comparisons may be found in Burggraf & Foster (1975), but the nnmerical 
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results show quite clearly that viscous diffusion is negligible except possibly at great 
distances from the vortex axis. The conclusion is that t'he rapid spreading of the 
vortex just upstream of breakdown is an inviscid phenomenon, perhaps not unlike 
the inviscid turning of a jet impinging on a wal1.t 

The equations in the breakdown region then appear to be the inviscid, Euler 
equations in the axial and azimuthal directions, which have solution 

rv = G(@), P +  +(w2 +w2) = F($) ,  (4.6) 

with ru = -a$/az, rw = a$/ar. 

In  addition, the radial force balance is 

aPlar = v2/r. (4.7) 

The unknown functions F and G are determined by the upstream solution, i.e. the 
numerical solution for x - z * + O .  Further details of such an analysis are left for 
future work. 

5. Discussion 
A number of earlier studies have dealt with vort,ex breakdown; these however have 

been concerned with vortex,flows in which the external conditions correspond to flow 
in a duct or past an aircraft wing. The present calculation of the development of a 
vortex jet appears to be the first that corresponds to naturally occurring atmospheric 
vortices. The numerical results provide strong evidence connecting the occurrence 
of breakdown in a tornado-like vortex jet with the non-existence of a self-similar flow 
to serve as the terminal state. For a non-dimensional flow force M 5 J / K 2  = 4 slightly 
greater than the critical value ill* that prohibits similarity solutions, calculations 
were carried out t o  a height sufficient to permit very close agreement with the first- 
order perturbation of the corresponding self-similar flow, thus ruling out breakdown 
for this case. For M slightly less than the critical value ill*, vortex breakdown occurs 
quickly. In  that case, the pressure and inertial forces were shown to dominate strongly 
over the viscous forces in the vicinity of the breakdown point, across the whole vortex 
jet. Outside a central core, the flow develops an even simpler structure in which the 
streamlines are merely displaced outwards by the strongly decelerating flow near the 
axis. 

The physical relevance of this work must be assessed because of the idealizations 
that have been introduced to make the analysis manageable. Of these, we mention 
the assumptions of incompressible, laminar, steady, axisymmetric motion of a homo- 
geneous fluid. Compressibility effects seem unimportant since recent estimates yield 
a maximum flow speed in tornadoes of the order of 60 mIs, much below the speed of 
sound. The flow in a tornado is clearly turbulent, so that a laminar analysis is equivalent 
to the assumption of constant eddy viscosity. Much more complicated turbulence 
models are now in use, but it would be rash to assert that  they can give better results 

t Barcilon (1967) has presented a purely inviscid treatment of breakdown in a tornado-like 
vortex. Our results, on the other hand, indicate that viscous effects remain important up to the 
immediate vicinity of the breakdown point (z* = Z*K&/v) ,  with only the final approach to 
breakdown governed by inc iscid processes. 
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in the present case, since little is known about the turbulence structure in a tornado. 
Our approach has been to emphasize the process of vortex breakdown without over- 
complicating the flow model. 

The assumption of steady axisymmetric flow rules out the multiple-vortex type of 
tornadoes observed in recent years; these may be a manifestation of another type of 
vortex breakdown. Nevertheless the single-vortex type occurs in large numbers and 
appears to be well suited to this type of representation. Finally, it is our belief that 
the assumption of a homogeneous fluid is justified on the basis that gradients of flow 
properties are very large near breakdown. Hence the length scale over which vortex 
breakdown occurs is small compared with that which would be needed by any driving 
force due to moisture content. 

The boundary condition on axial velocity, namely that w N K/2b as r + 00, implies 
that t,he flow outside the viscous core contains vorticity. Such a distribution of 
vorticity might be produced by baroclinic processes. There is no clear evidence from 
available tornado data that either supports or refutes such a contention. 

As a qualitative test of physical relevance, we have compared the results of our 
calculations with observations of the 1957 Dallas tornado.? Hoecker (1960) gives the 
maximum vertical velocity as about 23Oftls at  a height of 150ft above the ground. 
At this height the peak swirl velocity is about 19Oft/s at a radius of 120ft from the 
axis of symmetry, giving K = 23 000 ft2/s. Thus wo S/K is estimated to be very nearly 
1.2 ( M  = 1.7), the value used in our breakdown calculations. From Hoecker’s data, 
we determine the spreading rate drldz of the tornado core to be 0.08, based on locating 
the core ‘ edge ’ at the point of maximum azimuthal speed. A similar determination of 
the spreading rate from the numerical solution with M = 1.7 (case 2 of $ 4 )  yields 
dr/dz = 8v/K. Equating these gives 

which is a Reynolds number for the tornado. Comparing altitude in the Dallas tornado 
with our numerical solution is difficult because the initial condition (1.11) used herein 
was not observed at  any height in the tornado. If we equate the altitudes at  which 
the axial velocity defect first develops in Hoecker’s observations (150 f t )  and in our 
numerical solution (2 = 0*138), we have 

K / v  = 100, (5.1) 

z - 150 = ( K ~ / v )  (2- 0.138). (5.2) 

Now K/v  is given in (5.1) and 6 is 120ft as stated above, so substitution into (5.2) 
with Z* = 0.202 yields z* = 920ft as the predicted location of the beginning of flow 
reversal (vortex breakdown), as compared with an observed value of 850ft from 
Hoecker (19GO). Unfortunately, the magnitudes of the axial velocity at  altitudes 
below the breakdown location do not compare well with our results, so that the close 
agreement above on breakdown height should be regarded with reservation. 

The authors w-ish to thank Mr Karl Rust for his technical assistance. The work 
reported herein was sponsored by the National Severe Storms Laboratory (U.S 
Department of Commerce, National Oceanic and Atmospheric Administration). 
Reproduction of this article, with the customary credit to the source, is permitted. 

t Hoecker’s data analysis has been criticized as inaccurate, but it is better than anything else 
available at this time. 
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PLATE 1. Photographs of the Jordon, Jowa tornado 13 June  1976. (a)  Tlir torriado with :t 

rioarly conical fiinnc.1. (b )  The tornado a short time later with the bulge on the visible core. 
The tornado later reassumed the form shown I I I  ( a ) ,  followed once more by the appearance of 
the bulge midway up tho core. (Photograplls by Jim Briizck, courtesy NSSL.) 
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